Protection of the glutamate pool concentration in enteric bacteria.

نویسنده

  • Dalai Yan
چکیده

The central nitrogen metabolic circuit in enteric bacteria consists of three enzymes: glutamine synthetase, glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). With the carbon skeleton provided by 2-oxoglutarate, ammonia/ammonium (NH(4)(+)) is assimilated into two central nitrogen intermediates, glutamate and glutamine. Although both serve as nitrogen donors for all biosynthetic needs, glutamate and glutamine play different roles. Internal glutamine serves as a sensor of external nitrogen availability, and its pool concentration decreases upon nitrogen limitation. A high glutamate pool concentration is required to maintain the internal K(+) pool. The configuration of high glutamate and low glutamine pools was disrupted in GOGAT(-) mutants under low NH(4)(+) conditions: the glutamate pool was low, the difference between glutamate and glutamine was diminished, and growth was defective. When a GOGAT(-) mutant was cultured in an NH(4)(+)-limited chemostat, two sequential spontaneous mutations occurred. Each resulted in a suppressor mutant that outgrew its predecessor in the chemostat. The first suppressor overexpressed GDH, and the second also had a partially impaired glutamine synthetase. The result was a triple mutant in which NH(4)(+) was assimilated by two enzymes instead of the normal three and yet glutamate and glutamine pools and growth were essentially normal. The results indicate preference for the usual ratio of glutamate and glutamine and the resilient and compensatory nature of the circuit on pool control. Analysis of other suppressor mutants selected on solid medium suggests that increased GDH expression is the key for rescue of the growth defect of GOGAT(-) mutants under low NH(4)(+) conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria.

Previous studies showed that Salmonella typhimurium apparently senses external nitrogen limitation as a decrease in the concentration of the internal glutamine pool. To determine whether the inverse relationship observed between doubling time and the glutamine pool size in enteric bacteria was also seen in phylogenetically distant organisms, we studied this correlation in Bacillus subtilis, a g...

متن کامل

Coordinated Slowing of Metabolism in Enteric Bacteria under Nitrogen Limitation: A Perspective

It is natural to ask how bacteria coordinate metabolism when depletion of an essential nutrient limits their growth, and they must slow their entire rate of biosynthesis. A major nutrient with a fluctuating abundance is nitrogen. The growth rate of enteric bacteria under nitrogen-limiting conditions is known to correlate with the internal concentration of free glutamine, the glutamine pool. Her...

متن کامل

Effective Dose Rate of Radon Gas in Jooshan Hot Spring of Kerman Province

Background & Aims: Human beings are constantly exposed to different radiations that have always been recognized as a health hazard. Radon -222 and its daughter products are major sources of natural radiations and a significant total inhalation dose is related to them. Hence, the measurement of radon activity in the environment has gained an increasing importance. In this study, with the measure...

متن کامل

Effect of parental morphine addiction on extracellular glutamate concentration of dentate gyrus in rat offsprings

Introduction: Evidences show that parental morphine addiction impairs CNS development, learning and memory in offsprings. Regarding the role of glutamate in dentate gyrus on learning and memory, in this study the effect of parental morphine addiction on extracellular glutamate concentration of dentate gyrus was assessed. Materials and methods: In this study 20 female and 8 male rats were addic...

متن کامل

Coregulation of oxidized nicotinamide adenine dinucleotide (phosphate) transhydrogenase and glutamate dehydrogenase activities in enteric bacteria during nitrogen limitation.

The relationship between oxidized nicotinamide adenine dinucleotide (phosphate) [NAD(P)+] transhydrogenase (EC 1.6.1.1) and NAD(P)+ glutamate dehydrogenase in several enteric bacteria which differ slightly in their regulation of nitrogen metabolism was studied. Escherichia coli strain K-12 was grown on glucose and various concentrations of NH4Cl as the sole nitrogen source. In the range of 0.5 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 22  شماره 

صفحات  -

تاریخ انتشار 2007